Next-generation thin-film optical filters enhance excitation and emission in fluorescence imaging and detection systems
Fortunately, performance and signal quality can be greatly improved by integrating next-generation thin-film optical filters into fluorescence based instruments. Because proper optical filtering boosts throughput and enables wide-scale blocking, it solves problems like backscatter and poor signal quality, resulting in bright, high-contrast images of the target molecules.
Because system performance greatly depends on filter quality, optical filters are arguably the most important component of any fluorescence based instrument. With that in mind, here are some important concepts that should be considered when selecting optical filters for a fluorescence based system.
Fortunately, performance and signal quality can be greatly improved by integrating next-generation thin-film optical filters into fluorescence based instruments. Because proper optical filtering boosts throughput and enables wide-scale blocking, it solves problems like backscatter and poor signal quality, resulting in bright, high-contrast images of the target molecules.
Because system performance greatly depends on filter quality, optical filters are arguably the most important component of any fluorescence based instrument. With that in mind, here are some important concepts that should be considered when selecting optical filters for a fluorescence based system.