Skip to main content

Have I selected the right laser for my Raman experiments?

Thanks to rapid technology advancements in recent years, Raman spectroscopy has become a routine, cost-efficient, and much appreciated analytical tool with applications in material science and in-line process control for pharmaceutical, food & beverage, chemical and agricultural industries. Improvements in laser technology, detectors (CCDs and InGaAs arrays), and spectral filters (VBG-based notch filters), along with developments of new schemes for signal generation and detection, have aided Raman instrument manufacturers in overcoming the challenge of weak signals which has accelerated instrument development and market growth. In this white paper, we discuss important performance parameters to consider when selecting a laser for Raman spectroscopy experiments.

Thanks to rapid technology advancements in recent years, Raman spectroscopy has become a routine, cost-efficient, and much appreciated analytical tool with applications in material science and in-line process control for pharmaceutical, food & beverage, chemical and agricultural industries. Improvements in laser technology, detectors (CCDs and InGaAs arrays), and spectral filters (VBG-based notch filters), along with developments of new schemes for signal generation and detection, have aided Raman instrument manufacturers in overcoming the challenge of weak signals which has accelerated instrument development and market growth. In this white paper, we discuss important performance parameters to consider when selecting a laser for Raman spectroscopy experiments.

Premium Access

To access this content please enter your details in the fields below.

Media Partners